36. Neue Dimethinmerocyanin-Farbstoffe mit der (Sulfobutyl)benzothiazol-Gruppe als Donor-Teilchromophor und deren Aggregationsverhalten in wässriger Lösung

von Manfred Kussler und Heinz Balli*

Institut für Farbenchemie der Universität Basel, St. Johannsvorstadt 10, CH-4056 Basel

(7.XII.88)

Novel Dimethinemerocyanine Dyes with the (Sulfobutyl)benzothiazole Group as Donor Part of the Chromophor and their Aggregation Tendency in Aqueous Solution

A series of novel dimethinemerocyanine dyes with the (sulfobutyl)benzothiazole group as the donor part of the chromophor is synthesized in good yield and their aggregation tendency in H_2O without addition of salt investigated. The merocyanine dye 2b only gives J-aggregation in H_2O . The dyes 1a–f and 2a exhibit an intense, red-shifted absorption band due to J-aggregation in H_2O in the presence of Me₄NCl. In contrast, the dyes 1g and 2c–f show a slightly red-shifted absorption band. The degree of aggregation in H_2O is investigated by ultracentrifugation of the representative 2e. Indeed, the slightly red-shifted absorption band in H_2O is due to aggregation of 'oligomers' of the dye. Contrary to the aggregation of 'polymers' of dyes (J-aggregation), we suggest the term 'K' band for the slightly red-shifted absorption band. The hemicyanine dye 5 gives the same absorption band in MeOH and in MeOH/H₂O 1:3. The dye 11 shows an absorption band in H₂O that is probably blue-shifted because of negative solvatochromism. The merocyanine dye 13 gives H-aggregation in H₂O.

1. Problemstellung. – Zahlreiche Untersuchungen von Scheibe [1–4] sowie von Jelley [5] [6] zeigen, dass die leichtlöslichen Salze des Pinacyanols und des Pseudoisocyanins in wässriger Lösung in verschiedenartigen Aggregationsstufen auftreten können, welche sich durch ihren 'Polymerisationsgrad' voneinander unterscheiden. Jeder dieser Spezies kommt eine charakteristische Lichtabsorption zu, deren Absorptionsmaximum eine unterschiedliche Intensität und Wellenlänge besitzt. Das Auftreten dieser verschiedenartigen Aggregat-Formen hängt von der Art des Lösungsmittels, von der Konzentration des Farbstoffes sowie von der Temperatur ab. In wässriger Lösung lassen sich vier Formen verschiedenen 'Polymerisationsgrades' unterscheiden: eine monomolekulare, die durch eine M-Bande charakterisiert ist, eine dimolekulare, die eine D-Bande besitzt, sowie zwei ihrem Wesen nach verschiedene höhermolekulare Spezies, die entweder eine H-Bande oder eine J-Bande ausbilden. Nach Brunken und Poppe [7] kommt der hypsochrom zur M-Bande absorbierenden H-Bande ein niedriger Aggregationsgrad zu, der bathochrom zur M-Bande auftretenden J-Bande entspricht ein hoher Aggregationsgrad. Die Ausbildung von J-Banden ist für die photographische Verwertbarkeit von Cyanin-Farbstoffen von besonderer Bedeutung, da diese meistens eine hohe Sensibilisierungsintensität aufweisen, die nach dem langwelligen Gebiet steil abfällt [7].

Während die Ausbildung von J-Aggregaten in der Reihe der Kationocyanine seit mehr als 50 Jahren Gegenstand zahlreicher Untersuchungen darstellt, erfolgt eine systematische Bearbeitung dieses Phänomens in der Reihe der Merocyanine erst seit kurzem durch die Arbeitsgruppen von *Tsuda* [8–10] und von *Balli* [11–15].

Balli und *Wegmann* berichteten, dass in DMSO/H₂O-Gemischen die sukzessive Verkürzung der C₂₀-Alkylkette bei den Farbstoffen 1 zu einer steten Verringerung der J-Aggregationsneigung führt; ebenso ging bei Vertauschen der hydrophoben Alkyl-Kette und der hydrophilen Sulfoalkyl-Gruppe die Fähigkeit des Farbstoffes verloren, unter diesen Versuchsbedingungen J-Aggregate zu bilden (Farbstoff **2a**) [12].

Da nach neueren Untersuchungen [14] [15] in organischem Solvens/H₂O statt der gewünschten J-Bande oftmals eine metastabile H-Bande erhalten wird, die sich nach einer Induktionsperiode von mehreren Stunden oder Tagen in die thermodynamisch stabilere J-Bande umwandelt, wird nun das Aggregationsverhalten der Farbstoffe **1a**–g in Abhängigkeit von der Kettenlänge der Alkyl-Gruppe sowie von Farbstoff **2a** in H₂O untersucht. Die Farbstoffe **1a–g** und **2a** [11] [12] sind als SBTU⁺-Salze in H₂O unlöslich. Auf Zusatz von Me₄NCl können sie jedoch durch Behandlung im Ultraschallbad in 'Lösung gebracht' werden.

Um auszuschliessen, dass der Zusatz von Me₄NCl die Aggregation bewirkt, werden nun Farbstoffe mit Sulfobutyl-Gruppe im Donor-Teilchromophor synthetisiert, die in H₂O ohne Elektrolyt-Zusatz löslich sind, nämlich **2b–f**, **11** und **13**. Ihr Aggregationsverhalten wird untersucht. Farbstoffe mit Sulfoalkyl-Gruppe im Akzeptor-Teilchromophor, die ohne Zusatz von Salzen in H₂O löslich sind, sind in früheren Arbeiten beschrieben [13–15].

2. Synthesen. – Das zur Herstellung der sulfobutyl-haltigen Merocyanine 2b–f, 11 und 13 benötigte (2-Anilinovinyl)betain 5 ist in der Literatur nicht beschrieben. Bisher wurde 5 *in situ* aus 3 [16] und Diphenylformamidin (DPF) in der Schmelze hergestellt und mit der entsprechenden methylen-aktiven Verbindung zum Merocyanin-Farbstoff umgesetzt [11]. In der Schmelze erhält man jedoch ein nur schwer aufzutrennendes Gemisch aus Trimethincyanin 4 und (Anilinovinyl)betain 5 in der Produktverteilung 3:2 (Schema 1). Bei Durchführung der Umsetzung von 3 mit dem 4fachen Überschuss DPF bei 25° in CH₂Cl₂ erhält man dagegen die gewünschte Verbindung 5 in 82% Ausbeute; als Nebenprodukte werden geringe Mengen 4 (< 1%) sowie beträchtliche Mengen Oxalsäure-dianilid 6 erhalten, die sich durch Extraktion mit kochendem Benzol leicht entfernen lassen (Schema 1)¹).

Die Bildung von **6** bei der Umsetzung von Methylquartärsalzen mit DPF bei 25° in CH₂Cl₂ ist von uns bereits mehrfach beobachtet worden. Hingegen bleibt die Bildung von **6** bei der Synthese von (2-Anilinovinyl)quartärsalzen, die aus dem entsprechenden Methylquartärsalz und DPF nur in der Schmelze zugänglich sind

¹) In der Patentliteratur beschrieb *Riester* die Synthese von (*N*-Methylanilinovinyl)betain 7 (s. *Schema 1*) aus 3 und *N*-Methyldiphenylformamidin in siedendem MeOH (Ausbeute 20%) und dessen Umsetzung mit Methylquartärsalzen zu symmetrischen und unsymmetrischen Trimethincyanin-Farbstoffen [17].

[13] [14], gänzlich aus oder ist allenfalls in Spuren zu beobachten. Der Bildungsmechanismus von 6 ist bisher nicht bekannt und wurde im Rahmen dieser Arbeit nicht untersucht.

Die Merocyanin-Farbstoffe **2b-f** mit Sulfobutyl-Gruppe im Donor-Teilchromophor lassen sich nach zwei Methoden synthetisieren. Nach *Methode A* erfolgt die Synthese des Farbstoffes aus Betain **3** und dem (Anilinomethyliden)rhodanin **8** [11], wobei **2b** $(R = C_{18}H_{37})$ allerdings nur in 37% Ausbeute entsteht (*Schema 2*). Dagegen führt die Umsetzung von **5** mit den Rhodaninen **9a-e** [11] [18-21] in MeCN in Gegenwart von Et₃N in sehr hoher Ausbeute zu den Merocyanin-Farbstoffen **2b-f** (*Methode B, Schema* 2); **2f** ist in einem Patent [22] bereits beschrieben. Für die Herstellung von Merocyanin **2c** ist der Zusatz von Ac₂O notwendig.

Schema 2

Die Reaktion von 5 mit dem Benzothiophen-1,1-dioxid-Derivat 10 [23] sowie mit dem Isoxazolon 12 führt unter analogen Bedingungen in nahezu quantitativer Ausbeute zu den Farbstoffen 11 und 13 (Schema 3).

3. Aggregationsverhalten der Farbstoffe 1, 2, 5, 11 und 13. – Tab. 1 zeigt das spektrale Verhalten der Merocyanin-Farbstoffe 1a–g und 2a in DMSO (s. [11] [12]) sowie in Me₄NCl-haltigem H₂O. Die Daten in Me₄NCl-haltigem H₂O sind nur qualitativ, da vollständiges Auflösen des Farbstoffes nicht immer gewährleistet war. Im Gegensatz zu den Untersuchungen von Wegmann in DMSO/H₂O zeigen die Farbstoffe 1a–f ausnahmslos J-Aggregation im untersuchten Medium; bei sukzessiver Verkürzung des langkettigen Alkyl-Restes ist bis C₁₀ keine Verringerung der J-Aggregationstendenz festzustellen. In der Tat zeigen diese Farbstoffe in Me₄NCl-haltigem H₂O eine Bande bei 590 nm, die gegenüber der Monomerenabsorption in DMSO um $\Delta\lambda \approx 56$ nm rotverschoben ist. Auch die Halbwertsbreite der J-Bande ($\tilde{v}_{\nu_4} = 650$ cm⁻¹) hat gegenüber der der Monomerenabsorption in DMSO ($\tilde{v}_{\nu_9} = 2300$ cm⁻¹) abgenommen.

Farbstoff	$\lambda_{\max} [nm] (\varepsilon \cdot 10^{-3} [1 \cdot mol^{-1} \cdot cm^{-1}])$ in DMSO [11] [12]	λ_{max} [nm] in Me ₄ NCl-haltigem H ₂ O	⊿λ _{max} [nm]
1a –	536 (81,8)	590	+54
1b	534 (99,4)	590	+56
1c	533 (96,5)	590	+57
1d	533 (99,1)	590	+57
1e	532 (92,3)	590	+58
1f	532 (92,3)	590	+58
1g	533 (91,5)	541	+ 8
2a	533 (98,1)	580	+47
^a) Konzen	tration von Me ₄ NCl, $c = 0.9 \text{ mol} \cdot 1^{-1}$.		

Tab. 1. UV/VIS-Daten der Farbstoffe 1a-g und 2a in DMSO und in Me₄NCl-haltigem H₂O^a)

Aufgrund früherer Untersuchungen [15] sollte der Zusatz von Me₄NCl keinen Einfluss auf das Aggregationsverhalten selbst haben. So ist z. B. das SBTU⁺-Salz **1b** in H₂O unlöslich; erst bei Zusatz von Me₄NCl geht der Farbstoff unter J-Aggregatbildung in Lösung. Das Et₃NH⁺-Salz des gleichen Farbstoffes hingegen ist in H₂O gut löslich und bildet ohne Zusatz von Salzen ebenfalls eine J-Bande bei 590 nm aus. Dem Me₄NCl kommt also im Fall von **1b** lediglich die Funktion zu, den als SBTU⁺-Salz in H₂O unlöslichen Farbstoff in 'Lösung zu bringen'. Auch der Farbstoff **2a** zeigt in Me₄NCl-haltigem H₂O eine gegenüber der Monomerenabsorption rotverschobene J-Bande bei λ_{max} 580 nm; hingegen ist für **2a** in DMSO/H₂O-Gemischen von *Wegmann* [11] [12] stets H-Aggregation beobachtet worden. Die Farbstoffe **1b** und **2a** unterscheiden sich in der Anordnung der Sulfoalkyl-Gruppe und des langkettigen Alkyl-Substituenten im Donorund Akzeptor-Teilchromophor. In Me₄NCl-haltigem H₂O zeigen beide Farbstoffe J-Aggregation, jedoch erscheint die J-Bande von **2a** gegenüber der von **1b** 10 nm blauverschoben. Auch bei **2a** ist die J-Aggregatbildung nicht auf den Zusatz von Me₄NCl zurückzuführen. In der Tat zeigt der Farbstoff mit Me₄N⁺ als Gegenion (Farbstoff **2b** in *Tab. 2*) ohne Elektrolytzusatz J-Aggregation (J-Bande bei λ_{max} 577 nm mit Schulter bei 533 nm, $\tilde{v}_{\gamma} = 620 \text{ cm}^{-1}$).

Farbstoff	$\lambda_{\max} [nm] (\varepsilon \cdot 10^{-3} [1 \cdot mol^{-1} \cdot cm^{-1}])$ in MeOH	$\lambda_{\max} [nm] (\varepsilon \cdot 10^{-3} [1 \cdot mol^{-1} \cdot cm^{-1}])$ in H ₂ O	⊿λ _{max} [nm]
2b	527 (91,7)	577 (135,8)	+50
		533 (sh, 29,4)	
		(539 (89,3)) ^b)	(+12)
2c	521 (85,6)	540 (100,0)	+19
		(536 (103,0)) ^b)	(+15)
		(540 (113,0)) ^c)	(+19)
		$(540 (113,0))^{d})$	(+19)
2d	527 (88,2)	544 (104,2)	+17
		$(541 (106,6))^{b})$	(+14)
		(544 (106,2)) ^c)	(+17)
		$(544 (112,8))^{d})$	(+17)
2e	525 (85,1)	543 (99,3)	+18
		$(539\ (100,0))^{b})$	(+14)
		(543 (103,0))°)	(+18)
		$(543 (106,0))^{d})$	(+18)
2f	525 (86,0)	543 (100,0)	+18
		(539 (101,1)) ^b)	(+14)
		(543 (105,0)) ^c)	(+18)
		$(543 (107,0))^{d})$	(+18)
5	418 (54,0)	(415 (53,6))°)	(- 3)
11	503 (80,0)	478 (55,8)	-25
		493 (sh, 52,2)	
13	483 (81,4)	467 (61,0)	-16
		(475 (71,7)) ^b)	(8)
		(471 (65,7)) ^c)	(-12)
		(470 (65,8)) ^d)	(-13)

Tab. 2. UV/VIS-Daten der Farbstoffe 2b-f, 5, 11 und 13 in MeOH, H₂O und MeOH/H₂O-Gemischen^a)

^a) Konzentration des Farbstoffes in MeOH, $1-2 \cdot 10^{-5}$ mol· 1^{-1} ; in H₂O und in MeOH/H₂O-Gemischen, $0,7-1,9 \cdot 10^{-5}$ mol· 1^{-1} .

^b) In MeOH/H₂O 1:1.

^c) In MeOH/H₂O 1:3.

^d) In MeOH/H₂O 1:4.

Farbstoff 1g hingegen zeigt in Me₄NCl-haltigem H₂O eine strukturierte Bande (vgl. *Kurve b* in der *Figur*), die gegenüber der Monomerenabsorption in DMSO lediglich 8 nm rotverschoben ist und etwa die gleiche Halbwertsbreite wie diese besitzt. Wie Farbstoff 1g weisen auch die Merocyanine 2c-f in H₂O diese geringe bathochrome Verschiebung der Absorptionsbande auf. Auch der bekannte Farbstoff 14 [24] verhält sich gleich (λ_{max})

Figur. UV/VIS-Spektren von **2b** und **2d**, Monomerenbande (a) in MeOH, Aggregatbande (b, c) in H₂O. Kurve a: **2b** in MeOH, $c = 1,02 \cdot 10^{-5} \text{ mol} \cdot 1^{-1}$. Kurve b: **2d** in H₂O, $c = 8,93 \cdot 10^{-6} \text{ mol} \cdot 1^{-1}$. Kurve c: **2b** in H₂O, $c = 6,91 \cdot 10^{-6} \text{ mol} \cdot 1^{-1}$.

(MeOH) 523 nm; λ_{max} (H₂O/Puffer) 540 nm); Doppelschichten des Farbstoffes 14 auf einer Membran-Oberfläche zeigen je nach Typus der Membran eine Aggregat-Bande bei 495 oder 549 nm. Die Autoren [24] mutmassen, dass die blauverschobene Bande bei 495 nm einer Parallelanordnung der Farbstoff-Moleküle ('H-like aggregation') zuzuordnen is¹, die rotverschobene Bande bei 549 nm möglicherweise aus der 'head-to-tail'-Anordnung ('J-like aggregation') erfolgt. Jedoch könnte auch positive Solvatochromie der Monomerenspezies Ursache für die geringe Verschiebung der Absorptionsbande in H₂O und organischem Solvens sowie für die nahezu unveränderte Halbwertsbreite in den verwendeten Lösungsmitteln sein.

Tab.2 gibt das Aggregationsverhalten der Farbstoffe **2b-f**, **5**, **11** und **13** wieder. Lediglich der Merocyanin-Farbstoff **2b** zeigt in H₂O eine gegenüber der Monomerenabsorption in MeOH (*Kurve a* in der *Figur*) um $\Delta \lambda = 50$ nm rotverschobene J-Bande bei 577 nm ($\varepsilon = 135800$) mit Schulter bei 533 nm (*Kurve c* in der *Figur*). Die Halbwertsbreite der J-Bande beträgt $\tilde{v}_{\frac{1}{2}} = 620$ cm⁻¹ (vgl. $\tilde{v}_{\frac{1}{2}} = 2000$ cm⁻¹ für Monomerenbande in MeOH bei 527 nm). In MeOH/H₂O 1:1 ergibt sich eine Bande bei 539 nm, deren Habitus im wesentlichen der Monomerenabsorption gleicht und möglicherweise durch positive Solvatochromie der Monomerenspezies hervorgerufen wird. In MeOH/H₂O 1:3 und 1:4 resultiert eine zeitlich instabile H-Bande bei 495 nm mit Schulter bei 533 nm.

.

Die Merocyanin-Farbstoffe **2c-f** zeigen wie Farbstoff **1g** in H₂O eine strukturierte Bande (Farbstoff **2d**: *Kurve b* in der *Figur*), die gegenüber der Monomerenabsorption in MeOH um $\Delta \lambda = 17-19$ nm bathochrom verschoben ist. Die Halbwertsbreite dieser Bande ($\tilde{v}_{\frac{1}{2}} = 1900 \text{ cm}^{-1}$) ist vergleichbar mit der der Monomerenbande ($\tilde{v}_{\frac{1}{2}} = 2000 \text{ cm}^{-1}$). In MeOH/H₂O 1:1 erscheint diese strukturierte Bande gegenüber der Absorption in H₂O 3-4 nm hypsochrom verschoben; jedoch erfolgt die Absorption bei einem H₂O-Gehalt von 75% an der gleichen Stelle wie in H₂O selbst.

Das Hemicyanin 5, das die Vorstufe für die Merocyanin-Farbstoffe 2, 11 und 13 darstellt, ist in H_2O nicht vollständig löslich. Die Absorptionsbande in MeOH/ H_2O 1:3 ist jedoch bezüglich der Lage des Absorptionsmaximums, der Halbwertsbreite und des molaren Extinktionskoeffizienten nahezu identisch mit der der Monomerenabsorption.

Der Merocyanin-Farbstoff 11 zeigt in H_2O eine H-Bande bei 478 nm mit Schulter bei 493 nm.

Die Absorptionsbande des Farbstoffes 13 in H_2O hat einen ähnlichen Habitus wie die Monomerenbande in MeOH; sie erscheint jedoch um 16 nm blauverschoben. Diese hypsochrome Verschiebung ist möglicherweise auf negative Solvatochromie der Monomerenspezies zurückzuführen. Der Habitus der Absorptionsbande bleibt auch in MeOH/ H_2O -Gemischen erhalten, die Blauverschiebung nimmt mit steigendem H_2O -Gehalt zu.

Lösungsmittel	$E_T(30)$ -Wert [kcal·mol ⁻¹]	$\lambda_{\rm max}$ [nm] von 2e	λ_{\max} [nm] von 15
H ₂ O	63,1	543	-
HCONH ₂	56,6		536
CH ₃ OH	55,4	525	523
C,H,OH	51,9	525	523
(CH ₃) ₂ CHOH	48,4	_	518
CH ₃ CN	45,6	520	520
(CH ₃) ₂ SO	45,1	534	534
(CH ₃) ₃ COH	43,3		518
(CH ₃) ₂ CO	42,2	_	518
CH ₂ Cl ₂	41,1		518
CHCl ₃	39,1	-	526
CCl ₄	33,6	-	503

Tab. 3. λ_{max} -Werte von 2e und 15 in verschiedenen Lösungsmitteln als Funktion der $E_T(30)$ -Werte von Reichardt [26] [27]

Um zu überprüfen, ob die geringe Rotverschiebung der Absorptionsbande bei den Farbstoffen **1g** sowie **2c-f** auf Aggregation oder auf positive Solvatochromie der Monomerenspezies zurückzuführen ist, werden die Absorptionsmaxima der Farbstoffe **2e** und **15** [25] in verschiedenen Lösungsmitteln als Funktion der $E_T(30)$ -Werte von *Reichardt* [26] [27] gemessen (*Tab.3*). Während das langwelligste Absorptionsmaximum der Betain-Farbstoffe von *Reichardt* [26] [27] sehr stark solvens-abhängig ist und sich entsprechend der $E_T(30)$ -Skala kontinuierlich ändert, sind die λ_{max} -Werte der Merocyanine **2e** und **15** viel weniger solvens-abhängig und ändern sich nicht kontinuierlich. Innerhalb der $E_T(30)$ -Werte von 55,4 kcal·mol⁻¹ (MeOH) und 39,1 kcal·mol⁻¹ (CHCl₃) sind die λ_{max} -Werte von **2e** und **15** nur geringfügig verschieden; lediglich der λ_{max} -Wert in DMSO $(E_T(30) = 45,1 \text{ kcal·mol}^{-1})$ weicht innerhalb dieser Reihe stärker ab. Ebenso grosse Abweichungen sind in den Lösungsmitteln H₂O ($E_T(30) = 63,1 \text{ kcal·mol}^{-1}$), HCONH₂ (56,6 kcal·mol⁻¹) und in CCl₄ (33,6 kcal·mol⁻¹) festzustellen. Da die Messungen von λ_{max} als Funktion der $E_7(30)$ -Werte die positive Solvatochromie der Farbstoffe **1g**, **2c–f** und **14** nicht bestätigen können, wird exemplarisch die wässerige Lösung von **2e** mittels Ultrazentrifugation untersucht²) (Einzelheiten im *Exper*. *Teil, Kap. 4*). Bei allen Messungen in D₂O und in D₂O/H₂O 3:1 und 1:1 sowie in NaClhaltigem H₂O ist eine Konzentrationsverteilung in Sedimentationsrichtung (Meniskus in Richtung Boden) zu beobachten. Mit Hilfe der Sedimentationsgleichgewichtsmethode [29] werden die mittleren Molekulargewichte M_r bestimmt (Genauigkeit ±10%). Nach der Methode von *Edelstein* und *Schachman* [30] wird für das spezifische Partialvolumen \tilde{V} ein Wert von 0,8 berechnet.

In D₂O ($\rho = 1,104$) wird bei 44000 rpm aus der durch Linearregression erhaltenen Steigung im Diagramm ln A vs. r^2 (A = OD bei 543 nm, r = Abstand vom Rotationszentrum in cm) ein mittleres Molekulargewicht $M_r = 3500$ ermittelt. Dieser Wert entspricht der Grössenordnung von Heptameren. Bei 56000 rpm ergibt sich ein mittleres Molekulargewicht $M_r = 2100$, entsprechend der Grössenordnung von Tetrameren; ausserdem wird zu 2–10% eine höhermolekulare Spezies mit $M_r = 45000$ in der Nähe des Bodens der Doppelsektorzelle beobachtet, entsprechend 94 Monomereneinheiten. In D₂O/H₂O 3:1 ($\rho = 1,075$) ergibt sich bei 56000 rpm ein ähnliches Verhalten wie in D₂O: $M_r = 2200$ sowie 2–10% höhermolekulare Aggregate mit $M_r = 28000$, entsprechend der Grössenordnung von Tetrameren bzw. 58 Monomereneinheiten. In D₂O/H₂O 1:1 ($\rho = 1.05$) erhält man bei 44000 rpm für $M_r = 3500$ (Heptamer), bei 56000 rpm für $M_r = 2100$ (Tetramer); in diesem Fall können keine höhermolekulare Aggregate festgestellt werden. Bei Zugabe von wässriger 0,25M NaCl-Lösung zu der wässrigen Farbstofflösung werden sowohl bei 44000 rpm als auch bei 56000 rpm ausser der niedermolekularen Spezies mit $M_r = 2600$ (Pentamer) auch höhermolekulare Aggregate mit $M_r = 43\,000$ (89 Monomereneinheiten) beobachtet. Der Anteil der höhermolekularen Aggregate beträgt ca. 30%.

4. Diskussion. – Im Gegensatz zu früheren Untersuchungen in DMSO/H₂O zeigen also die von Wegmann [11] [12] als SBTU⁺-Salz hergestellten Merocyaninsulfonate 1a–f und 2a in Me₄NCl-haltigem H₂O J-Aggregation. Farbstoff 1g hingegen weist eine im Vergleich zur Monomerenbande nur schwach rotverschobene Absorptionsbande auf. Es ist im Rahmen dieser Arbeit gezeigt worden, dass die J-Aggregation der Farbstoffe nicht auf den Elektrolytzusatz (Me₄NCl) zurückzuführen ist; dem Me₄NCl kommt lediglich die Bedeutung zu, den Farbstoff als J-Aggregat in 'Lösung zu bringen'.

Die schwach rotverschobene Absorptionsbande der Farbstoffe **1g** und **2c-f** ist ebenfalls auf Aggregation zurückzuführen; positive Solvatochromie kann als alleinige Ursache für die schwach bathochrome Verschiebung der Absorptionsbande ausgeschlossen werden. Die Ultrazentrifugationsstudien an Farbstoff **2e** zeigen, dass in D₂O, D₂O/H₂O-Gemischen und in NaCl-haltigem H₂O grösstenteils niedermolekulare Aggregate vorliegen, je nach Lösungsmittelzusammensetzung und Zentrifugiergeschwindigkeit können auch höhermolekulare Aggregate bis zu einem Anteil von 30% festgestellt werden. Die Absorptionsspektren von **2e** in H₂O, D₂O, D₂O/H₂O-Gemischen sowie in NaCl-haltigem H₂O sind identisch; in NaCl-haltigem H₂O ist durch partielle Ausfällung des Farbstoffes eine Verbreiterung der Absorptionsbande zu beobachten. Da höhermolekulare Aggre

²) Die Autoren danken Herrn *A. Lustig*, Biozentrum der Universität Basel, Abt. Biophysikalische Chemie, Klingelbergstrasse 70, CH-4056 Basel, für die Ultrazentrifugationsstudien und deren Interpretation [28].

gate nur zu einem geringen Anteil vorhanden sind, ist die Absorptionsbande hauptsächlich auf niedermolekulare Aggregate (Grössenordnung: Tetramer bis Heptamer) zurückzuführen. Im Gegensatz zu früheren Ultrazentrifugationsstudien bei grenzflächenaktiven Dimethinmerocyaninsulfonaten mit J-Aggregation [14] ist das Molekulargewicht der aggregierenden Spezies von 2e um ein Vielfaches geringer; daher schlagen wir für diese in H_2O schwach bathochrom verschobene Absorptionsbande den Begriff 'K'-Bande vor, um zwischen den hochmolekularen, J-aggregierenden Spezies der Farbstoffe 1a-f und 2a-b und den niedermolekularen Aggregaten der Merocyanine 1g und 2c-f zu unterscheiden.

Im Rahmen dieser Arbeit ist gezeigt worden, dass bei geeignetem Donor- und Akzeptor-Teilchromophor, die über eine Dimethin-Kette miteinander verknüpft sind, die Anordnung der langkettigen hydrophoben Alkyl-Gruppe und des hydrophilen Sulfoalkyl-Substituenten keinen Einfluss auf das Aggregationsverhalten des Farbstoffes hat; die Farbstoffe zeigen in H₂O eine J-Bande, die durch 'polymere' Aggregate verursacht wird. Auch bei sukzessiver Verkürzung des langkettigen Alkyl-Substituenten ist bis zu der Kettenlänge C₁₀ ebenfalls J-Aggregation zu beobachten. Bei der Alkylkettenlänge C₂ in Donor- und Akzeptor-Teilchromophor erhält man eine schwach bathochrom verschobene 'K'-Bande, die durch 'oligomere' Anordnung der Farbstoff-Moleküle hervorgerufen wird. Diese schwach rotverschobene Absorptionsbande beobachtet man auch bei Aryl-Substitution im Akzeptor-Molekül und bei unsubstituiertem Akzeptor-Teilchromophor.

Im Gegensatz zu den Rhodaninyl-Farbstoffen 1 und 2 zeigen das Hemicyanin 5 sowie die Merocyanin-Farbstoffe 11 und 13 keine J- bzw. 'K'-Bande. So ist die Absorptionsbande von 5 in organischem Solvens und in organischem Solvens/H₂O bezüglich der Lage des Absorptionsmaximums, der Halbwertsbreite und des molaren Extinktionskoeffizienten nahezu identisch. Farbstoff 11 zeigt in wässerigen Systemen H-Aggregation. Die Absorptionsbande von 13 ist in H₂O und in organischem Solvens/H₂O möglicherweise infolge negativer Solvatochromie blauverschoben.

Diese Arbeit wurde vom Schweizerischen Nationalfonds zur Förderung der wissenschaftlichen Forschung (Projekt-Nr. 2.230-0.86) unterstützt.

Experimenteller Teil

Allgemeines. Schmp. (nicht korrigiert): Heizblock. UV/VIS-Spektren: Lambda 5 der Fa. Perkin-Elmer und Acta M IV der Fa. Beckman Instruments; Angabe von λ_{max} (ε [1 · mol⁻¹ · cm⁻¹]) in nm. IR-Spektren: PE 682 der Fa. Perkin-Elmer; KBr-Pressling; Angabe von \tilde{v} in cm⁻¹. Die Mikro-Elementaranalysen wurden in den analytischen Abteilungen von Ciba-Geigy AG und Sandoz AG, Basel, durchgeführt.

1. Zwischenprodukte. – 4-[2-(2-Anilinovinyl) benzothiazol-3-io]butansulfonat (5). Es werden 39,3 g (200,3 mmol) <math>N,N'-Diphenylformamidin und 14,3 g (50,1 mmol) 4-(2-Methylbenzothiazol-3-io)butansulfonat (3) [16] in 100 ml CH₂Cl₂ suspendiert und 7 Tage im verschlossenen *Erlenmeyer*-Kolben bei 25° gerührt. Der Niederschlag wird abgesaugt und mit CH₂Cl₂ gewaschen. Die CH₂Cl₂-Lsg. enthält hauptsächlich N,N'-Diphenylformamidin sowie geringe Mengen Oxaldianilid (6), 5 und symmetrisches Trimethincyanin 4. Aus dem Niederschlag 5/6 lässt sich 6 problemlos durch Extraktion mit heissem Benzol entfernen: 16,6 g (82%) 5 als orange-rotes Pulver, DC- und analysenrein. Schmp. 306–312° (Zers.). UV/VIS (MeOH): 418 (54000). UV/VIS (MeOH/H₂O 1:3): 415 (53 600). IR (KBr): 3285w, 3185w, 3140w, 3090–2860m (br.), 1645s, 1590s, 1535s, 1485s, 1465s, 1315s, 1295s, 1260s, 1220s, 1170s, 1035s, 750s, 600m. Anal. ber. für C₁₉H₂₀N₂O₃S₂·0,8 H₂O (402,9): C 56,64, H 5,40, N 6,95, O 15,09; gef.: C 56,7, H 5,5, N 6,8, O 15,2.

2. Merocyanine. – 2.1. Tetramethylammonium-4- $\{2,3$ -dihydro-2- $\{2-(3 - octadecyl-4 - oxo-2 - thioxothiazolidin-5-yliden\}ethyliden\}benzothiazol-3-yl\}butansulfonat (2b). Es werden 0,98 g (2,51 mmol) 5 und 0,97 g (2,51 mmol) 3-Octadecyl-4-oxo-2-thioxothiazolidin (9a) [11] in 18 ml MeCN in Gegenwart von 2 ml Et₃N 6 h gekocht. Wenig ungelöstes, nicht-umgesetztes 5 wird heiss abfiltriert und das Filtrat eingedampft. Der ölige Rückstand wird mit einer Lsg. von 11,00 g Me₄NCl in 20 ml EtOH versetzt, kurz aufgekocht und langsam abkühlen gelassen. Nach Stehenlassen über Nacht im Kühlschrank wird der Niederschlag abgesaugt und mit Me₄NCl-haltigem EtOH und Et₂O gewaschen. Umkristallisation aus Me₄NCl-haltigem EtOH: 1,54 g (81%) rot-violette Nadeln mit grünem Oberflächenglanz. Schmp. 162–170° (Zers.). UV/VIS (MeOH): 527 (91700). UV/VIS (MeOH/H₂O 1:1): 539 (89 300). UV/VIS (H₂O): 577 (135800), 533 (sh, 29400). IR (KBr): 2920s, 2850s (CH), 1695m (CO), 1565m, 1520s, 1470m, 1380m, 1320m, 1200s (br.), 1135m, 1035m, 950m. Anal. ber. für C₃₈H₆₃N₃O₄S₄·0,2 H₂O (757,8): C 60,23, H 8,43, N 5,55, O 8,87; gef.: C 60,3, H 8,4, N 5,6, O 8,8.$

Es werden 0,57 g (2 mmol) 3 und 0,98 (2 mmol) 5-(Anilinomethyliden)-3-octadecyl-4-oxo-2-thioxothiazolidin (8, $R = C_{18}H_{37}$) [11] in 6 ml MeCN in Gegenwart von 4 ml Et₃N 6 h gekocht. Die rotviolette Lsg. wird im Wasserstrahlpumpenvakuum zur Trockene eingedampft. Der Rückstand wird in heissem MeOH gelöst, die Lsg. von unlöslichem Produkt abfiltriert und das Filtrat mit einer Lsg. von 2,00 g Me₄NCl in 30 ml MeOH versetzt. Nach kurzem Aufkochen wird langsam abkühlen gelassen. Der Niederschlag wird abgesaugt und aus Me₄NCl-haltigem EtOH umkristallisiert: 0,56 g (37%) rot-violette Nadeln mit grünem Oberflächenglanz, identisch mit 2b aus 5 und 9a (s. oben).

2.2. Kalium-4- $\{2,3-dihydro-2-\{2-(4-oxo-2-thioxothiazolidin-5-yliden)ethyliden]benzothiazol-3-yl\}butansulfo$ nat (2c). Es werden 1,21 g (3 mmol) 5 und 0,40 g (3 mmol) 4-Oxo-2-thioxothiazolidin (9b) [18] in 8 ml MeCN inGegenwart von 2 ml Et₃N zum Sieden erhitzt und mit 2 ml Ac₂O versetzt. Nach 4 h wird die rot-violette Lsg.eingedampft. Der halbfeste Rückstand wird in 20 ml MeOH aufgenommen und filtriert. Zum Filtrat wird eine Lsg.von 4,40 g KOAc in 40 ml MeOH gegeben und kurz aufgekocht. Bereits in der Siedehitze fällt ein rot-violetterNiederschlag aus. Nach Erkalten wird der Niederschlag abgesaugt und mit KOAc-haltigem MeOH gewaschen.Umkristallisation aus wässr. EtOH: 1,36 g (93%) rot-violette Kristalle. Schmp. 265–282° (Zers.). UV/VIS(MeOH): 521 (85600). UV/VIS (MeOH/H₂O 1:1): 536 (103000). UV/VIS (MeOH/H₂O 1:3): 540 (113000).UV/VIS (MeOH/H₂O 1:4): 540 (113000). UV/VIS (H₂O): 540 (100000). IR (KBr): 1675m (CO), 1560s, 1525s,1380s, 1320m, 1180s, 1040m. Anal. ber. für C₁₆H₁₅KN₂O₄S₄·1,2 H₂O (488,3): C 39,36, H 3,59, N 5,74, O 17,04;gef.: C 39,1, H 3,4, N 5,6, O 16,6.

2.3. Kalium-4- $\{2,3-dihydro-2-[2-(4-oxo-3-phenyl-2-thioxothiazolidin-5-yliden)ethyliden]benzothiazol-3-yl\}bu$ tansulfonat (2d). Es werden 1,21 g (3 mmol) 5 und 0,63 g (3 mmol) 4-Oxo-3-phenyl-2-thioxothiazolidin (9c) [19] [21]in 8 ml MeCN in Gegenwart von 2 ml Et₃N 6 h gekocht. Nach Abkühlen wird die rot-violette Lösung eingedampft,der ölige Rückstand in 10 ml heissem MeOH aufgenommen, filtriert und das Filtrat mit einer Lsg. von 5,00 gKOAc in 40 ml MeOH versetzt, kurz aufgekocht und langsam abkühlen gelassen. Der Niederschlag wird abgesaugt und mit MeOH und Et₂O gewaschen. Die vollständige Reinigung des Farbstoffes erfolgt durch Extraktionmit heissem EtOH: 1,27 g (78%) rot-violettes Pulver. Schmp. 308–317° (Zers.). UV/VIS (MeOH): 527 (88200).UV/VIS (MeOH/H₂O 1:1): 541 (106600). UV/VIS (MeOH/H₂O 1:3): 544 (106200). UV/VIS (MeOH/H₂O 1:4):544 (112800). UV/VIS (H₂O): 544 (104200). IR (KBr): 1695m (CO), 1515s, 1470s, 1380s, 1320m, 1220s, 1115s.Anal. ber. für C₂₂H₁₉KN₂O4S₄·1,2 H₂O (564,4): C 46,83, H 3,82, N 4,96, O 14,74; gef.: C 46,6, H 4,0, N 5,0, O 14,8.

2.4. Kalium-4- $\{2,3$ -dihydro-2- $\{2$ -(3-methyl-4-oxo-2-thioxothiazolidin-5-yliden)ethyliden]benzothiazol-3-yl $\}$ butansulfonat (2e). Es werden 1,21 g (3 mmol) 5 und 0,44 g (3 mmol) 3-Methyl-4-oxo-2-thioxothiazolidin (9d) [20] in 8 ml MeCN in Gegenwart von 2 ml Et₃N 6 h gekocht. Nach Erkalten wird die Lsg. eingedampft und der ölige Rückstand in 50 ml heissem MeOH aufgenommen, mit einer Lsg. von 11,00 g KOAc in 50 ml MeOH versetzt, kurz aufgekocht und langsam abkühlen gelassen. Der Niederschlag wird abgesaugt, mit MeOH und Et₂O gewaschen und aus KOAc-haltigem MeOH umkristallisiert: 1,40 g (97%) rot-violette Kristalle. Schmp. 296–300° (Zers.). UV/VIS (MeOH): 525 (85100). UV/VIS (MeOH/H₂O 1:1): 539 (100000). UV/VIS (MeOH/H₂O 1:3): 543 (103000). UV/VIS (MeOH/H₂O 1:4): 543 (106000). UV/VIS (H₂O): 543 (99300). IR (KBr): 1680w (CO), 1560m, 1525s, 1470m, 1375m, 1320s, 1210s, 1125s, 1045m. Anal. ber. für C₁₇H₁₇KN₂O₄S₄ (480,7): C 42,48, H 3,56, N 5,83, O 13,31; gef.: C 42,5, H 3,8, N 5,5, O 13,4.

2.5. Kalium-4- $\{2,3-dihydro-2,[2-(2,3-dihydro-1,1,3-trioxobenzo[b]thiophen-2-yliden)ethyliden]benzothiazol-$ 3-yl<math>butansulfonat (11). Es werden 0,67 g (1,66 mmol) 5 und 0,30 g (1,66 mmol) 3-Oxo-2,3-dihydrobenzo[b]thiophen-1,1-dioxid (10) [23] in 8 ml MeCN in Gegenwart von 2 ml Et₃N 4 h gekocht. Nach Erkalten wird die Lsg. eingedampft und der halbfeste Rückstand in 10 ml heissem MeOH gelöst und mit einer Lsg. von 4,40 g KOAc in 30 ml MeOH versetzt. Nach kurzem Aufkochen fällt bereits in der Siedehitze ein roter feinkristalliner Niederschlag aus. Nach langsamem Abkühlen auf 25° wird der Niederschlag abgesaugt und mit MeOH sowie mit Et₂O gewaschen, Umkristallisation aus wässr. EtOH: 0,76 g (88%) orange-rote Kristalle. Schmp. 211–219° (Zers.). UV/VIS (MeOH): 503 (80000). UV/VIS (H₂O): 478 (55 800), 493 (sh, 52 200). IR (KBr): 1645*m* (CO), 1545*s*, 1510*s*, 1460*w*, 1380*s*, 1320*s*, 1250*s* (br.), 1200*s*. Anal. ber. für C₂₁H₁₈KNO₆S₃·0,2 H₂O (519,3): C 48,58, H 3,57, N 2,70, O 19,10; gef.: C 48,3, H 3,4, N 2,7, O 18,9.

2.6. Kalium-4- {2,3-dihydro-2-[2-(4,5-dihydro-3-methyl-5-oxoisoxazol-4-yliden)ethyliden]benzothiazol-3-yl}butansulfonat (13). Es werden 0,50 g (1,24 mmol) 5 und 0,24 g (1,29 mmol) (3-Methylisoxazol-5(4H)-on)-Morpholinsalz (12; Fluka AG) in 8 ml MeCN in Gegenwart von 2 ml Et₃N 4 h gekocht. Nach Erkalten wird die Lsg. eingedampft und das zurückbleibende Öl in 10 ml heissem MeOH gelöst, mit 3,00 g KOAc in 20 ml MeOH versetzt und kurz aufgekocht. Bereits in der Siedehitze fällt ein orange-roter Niederschlag aus. Nach langsamem Abkühlen auf 25° wird der Niederschlag abgesaugt, mit MeOH gewaschen und aus wässr. EtOH umkristallisiert: 0,49 g (92%) orange-rotes Pulver. Schmp. 280–292° (Zers.). IR (KBr): 1695m (CO), 1575s, 1505s, 1460m, 1415s, 1390m, 1330m, 1240m. UV/VIS (MeOH): 483 (81400). UV/VIS (MeOH/H₂O 1:1): 475 (71700). UV/VIS (MeOH/H₂O 1:3): 471 (65700). UV/VIS (MeOH/H₂O 1:4): 470 (65800). UV/VIS (H₂O): 467 (61000). Anal. ber. für C₁₇H₁₇KN₂O₅S₂ (432,5): C 47,21, H 3,96, N 6,48, O 18,49; gef.: C 46,9, H 3,8, N 6,5, O 18,5.

3. UV/VIS-spektroskopische Untersuchungen: Bestimmung von ε sowie des Aggregationsverhaltens in H₂O. – Alle UV/VIS-Messungen erfolgen in einer auf 25° thermostatisierten Küvette in MeOH (*Uvasol*) der Fa. *Merck*. Das Aggregationsverhalten wird in bidest. H₂O untersucht. Die Farbstoffe werden in dem jeweiligen Lsgm. mittels 15 min Behandlung im Ultraschallbad gelöst.

4. Untersuchung des Aggregationsgrades von 2e mittels Ultrazentrifugation [28]. – Die Ultrazentrifugationsstudien werden mit einer anal. Ultrazentrifuge, die mit Absorptionsoptik und einem photoelektrischen Schreibsystem ausgestattet ist (Fa. *Beckman*, Modell *E*) durchgeführt. Die Messungen erfolgen in einer 12-mm-Doppelsektorzelle aus *Epon* mit Hilfe eines *An-D*-Rotors bei 44000 und 56000 rpm. Die verwendeten Farbstoff-Lsg. besitzen ein *OD* von 0,4–0,8 bei 543 nm. Konzentration von 2e, $c = 1,94–3,87 \ \mu g \cdot ml^{-1}$ (4,03–8,06·10⁻⁶ mol·1⁻¹). Temp. 20°. Die Messungen werden in H₂O, D₂O sowie in D₂O/H₂O 3:1 und 1:1 und in NaCl-haltigem H₂O durchgeführt. Die mittleren Molekulargewichte *M*_r werden mit Hilfe eines Linearregression-Computerprogrammes von *Berger* und *Lustig* [28] berechnet. Dieses Computerprogramm erlaubt eine optimale Angleichung der Grundlinie von *OD*; dadurch wird die beste lineare Anpassung von ln *A vs. r²* erhalten. *A* entspricht dem *OD* bei 543 nm und ist direkt proportional der Konzentration des Farbstoffes; *r* ist der Abstand vom Rotationszentrum in cm.

LITERATURVERZEICHNIS

- [1] G. Scheibe, Angew. Chem. 1936, 49, 563.
- [2] G. Scheibe, Angew. Chem. 1937, 50, 51.
- [3] G. Scheibe, Angew. Chem. 1937, 50, 212.
- [4] G. Scheibe, Kolloid-Z. 1938, 82, 1.
- [5] E.E. Jelley, Nature (London) 1936, 138, 1009.
- [6] E.E. Jelley, Nature (London) 1937, 139, 631.
- [7] J. Brunken, E. J. Poppe, Veröff. wiss. Photolab. Wolfen 1965, 10, 101.
- [8] F. Mizutani, S. Iijima, K. Tsuda, Bull. Chem. Soc. Jpn. 1982, 55, 1295.
- [9] Jap. Research Institute for Photosensitizing Dyes Co., Jpn. Kokai Tokkyo Koho JP 5863756 (15.04.1983) (CA: 1983, 99, 159951 b).
- [10] S. Iijima, F. Mizutani, Y. Tanaka, K. Sasaki, K. Tsuda, Kenkyu Hokoku Sen'i Kobunshi Zairyo Kenkyusho 1984, 143, 11 (CA: 1986, 105, 154665 u).
- [11] A. Wegmann, Dissertation, Universität Basel, 1981.
- [12] H. Balli, A. Wegmann, 8. Internat. Farbensymposium, Baden-Baden, 1982.
- [13] E. Langhals, H. Balli, Helv. Chim. Acta 1985, 68, 1782.
- [14] M. Kussler, H. Balli, Helv. Chim. Acta 1987, 70, 1583.
- [15] M. Kussler, H. Balli, Helv. Chim. Acta 1989, 72, 17.
- [16] G. Bach, J. Brunken to VEB, Wolfen, Ger. (East) Pat. 12477 (17.12.1956).
- [17] O. Riester, Agfa AG, Ger. Pat. 929080 (16.08.1955).
- [18] M. Nencki, J. Prakt. Chem. 1877, 16, 1.
- [19] R. Andreasch, A. Zipser, Monatsh. Chem. 1903, 24, 499.

- [20] R. Andreasch, A. Zipser, Monatsh. Chem. 1904, 25, 159.
- [21] B. Holmberg, J. Prakt. Chem. 1910, 81, 451.
- [22] Fuji Photo Film Co., Jpn. Kokai Tokkyo Koho JP 6010241 (19.01.1985) (CA: 1985, 103, 14517 f).
- [23] F. Arndt, A. Kirsch, P. Nachtwey, Ber. Dtsch. Chem. Ges. 1926, 59, 1074.
- [24] N. Nakashima, R. Ando, H. Fukushima, T. Kunitake, J. Chem. Soc., Chem. Commun. 1982, 707.
- [25] L.G.S. Brooker, G.H. Keyes, R.H. Sprague, R.H. Van Dyke, E. Van Lare, G. Van Zandt, F.L. White, J. Am. Chem. Soc. 1951, 73, 5326.
- [26] C. Reichardt, E. Harbusch-Görnert, Liebigs Ann. Chem. 1983, 721.
- [27] C. Reichardt, E. Harbusch-Görnert, G. Schäfer, Liebigs Ann. Chem. 1988, 839.
- [28] A. Lustig, Privatmitteilung (Biozentrum, CH-4056 Basel).
- [29] R. Eason in 'Centrifugation A Practical Approach', Ed. D. Rickwood, IRL Press Ltd., P.O. Box, 1 Eynsham, Oxford, 1984.
- [30] S.J. Edelstein, H.K. Schachman, J. Biol. Chem. 1967, 242, 306.